
www.manaraa.com

Provenance Data Storage

Peter Macko
pmacko@fas.harvard.edu

Nicolas Ward
nward@fas.harvard.edu

Abstract

Provenance research has generally focused on issues
with data collection and organization. Most ap-
proaches represent stored provenance data as a di-
rected acyclic graph (DAG), where objects such as
files and processes are nodes in the graph and di-
rected edges specify ancestry relationships between
them. While there has been some work addressing
logical compression of these provenance graphs, ef-
ficient physical storage of provenance data remains
unaddressed. In approaching this problem, we im-
plemented and evaluated several techniques tailored
for provenance storage, which were inspired by exist-
ing representations of general semi-structured data.
We considered variants of vertical partitioning, PASS,
and RDF, varying two kinds of compression. We com-
pared query runtime, disk usage, and data load time
across these storage methods. Our results indicate
that vertical partitioning performs best in most cases,
while the benefit of compression varies by query.

1 Introduction

In computer science research, provenance refers to
the origins of, and transformations applied to, a spe-
cific segment of data. Current provenance research is
focused in several areas, including collecting prove-
nance [5, 22], improving storage methods [8], and
querying provenance data [13]. Many of these ef-
forts are motivated by other fields of scientific inquiry,
where determining whether a data point is an inter-
esting outlier or experimental error determines the
validity of a result. This result auditing is an impor-
tant step in reproducibility and is enabled by collect-
ing and storing provenance during data processing.

In addition to the sciences, provenance is being
used to improve human-computer interaction (HCI)
research, by enabling a study to better track a user’s
interface actions over time, and in particular, the
higher-level operations performed by a user. For the
end user, adding web browser provenance can provide
additional context to improve web search results [18].

Both of these areas of potential application of

provenance require efficient storage of the provenance
data. For the physical sciences, astronomical sky sur-
veys or protein structures quickly surpass terabyte
scales [3]; even with increasingly cheap storage tech-
nology, we need to be able to store the provenance
of this data efficiently. For HCI, responsiveness and
unobtrusiveness are both important to the user ex-
perience, so we require fast query runtimes and even
faster provenance store inserts when collecting data
for user actions.

We quantify efficiency by emphasizing low-
latency query run times and fast database loading,
while also seeking a reduction in on-disk space usage.
When these factors conflict, we prefer improved user
interactivity. The semi-structured provenance data
is typically represented as a directed acyclic graph
(DAG). Existing work in provenance efficiency has fo-
cused on logical improvements, such as reducing repli-
cation of subsets of the graphs [8], or applying gen-
eral graph compression techniques [13]. Disk space is
in general very cheap, but even small datasets grow
by an order of magnitude or more when producing a
provenance graph [8]. For example, the MiMI dataset
is 270 MB of protein structure data, while the prove-
nance for that data occupies 6 GB [17].

In considering all of these factors for efficient
provenance processing, storage, and querying, we
note that the space is as yet largely unexplored. We
will demonstrate a few generalizable techniques for
improving provenance storage performance as per the
above metric, which we hope will serve as a “jumping
off point” for further research supporting provenance.

The paper is organized as follows. We describe
the general problem of provenance storage in Sec-
tion 2, and focus on the storage approaches we have
implemented in Section 3. Then in Section 4, we de-
scribe our experimental set up, whose results are pre-
sented in Section 5. Section 6 contains a summary of
related work. We conclude the paper in Section 7.

1



www.manaraa.com

2 Background

2.1 Provenance Data Model

Our work focuses on the data model used by
the provenance research group at Harvard Univer-
sity [21]. Provenance is conceptually represented as a
directed acyclic graph (DAG), where each node corre-
sponds to some object, or a version of an object. For
example, when tracking provenance at the system call
level, such as in PASS [22] and ES3 [5], the objects
are files, processes, and Unix pipes. At the work-
flow level, the objects of interests are files, operators,
ports, etc. Every node has its own set of properties,
most importantly, NAME and TYPE. Specific examples
of additional properties include PID (for processes),
INODE (for files), or executableFile (for workflow
operators calling external programs).

There are two kinds of edges between the nodes.
The first and most important kind are the INPUT
edges, which define the ancestry relationships be-
tween objects. For example, executing the Unix com-
mand cp a.txt b.txt as in Figure 1, a.txt is an in-
put to /bin/cp, which in turn produces b.txt. The
second kind are PREV edges, which connect different
versions of the same object created as a part of a
cycle-breaking algorithm [6]. Cycles in the prove-
nance graph are broken by introducing new versions
of objects, such as files or processes. For example, if
a file A is an input of file B, and then file B is an
input of A, a provenance analyzer breaks the cycle
by causing the write from B to A to introduce a new
version of A. Consequently, the provenance graph has
one node for B and two nodes for each version of A.

Equivalently, a provenance record can be ex-
pressed as a set of RDF triples, as shown in Table 1.
Each ancestry edge between two nodes A and B is
represented as (A.id, INPUT, B.id), and every prop-
erty of a node A is stored as (A.id, key, value).

2.2 Compression Techniques

The provenance datasets we tested (see 4.2) contain
many string literals, which are frequently repeated
and are often long (more than 80 characters). Be-
cause of this dataset feature, we apply dictionary en-
coding, which replaces each string literal with an in-
teger ID [1, 2, 23]. In the case of an RDF storage
model (see 2.1), this simple approach compresses the
size of individual triples by a factor of 20 or more,
from hundreds of single-byte characters to only three
32-bit integers.

It is possible to compress the triples further by
applying null suppression as is done by Abadi et

Figure 1: Provenance Example. An example of a
simple provenance graph for the Unix command cp
a.txt b.txt.

al. [1]. The fundamental idea is to delete consecutive
zero bytes in data and replace them with a descrip-
tion of how many there were and where they existed.
This approach allows us to remove leading null bytes
in an integer, so instead of using a full 4 bytes, we
store the integer in the exact numbers of bytes (1, 2,
3, or 4) necessary and store the number of removed
zeros as two bits in the block header. It is possible
to achieve a better compression ratio by removing all
leading null bits of an integer, but according to Abadi
et al. [1], this would cause a major performance hit,
as all the queries would quickly become CPU bound.
Our initial experiments showed that encoding inte-
gers at the bit level is two times slower, and decoding
is approximately ten times slower. This performance
cost does not justify the minimal space savings we
get in return, which we estimated to be between 5%
to 10% using statistics gathered during data loading
(see 5.1). This effect is most likely due to instruction
sets designed to make operations at byte boundaries
be the most efficient.

The average size in bytes of a provenance node
varies from dataset to dataset. Representing node
IDs as 32-bit integers sets an upper bound on the
number of nodes that can be represented; for exam-
ple, if we assume an average node size of 400 bytes,
then a dataset exceeding 1.6 TB would likely have
more than 232 provenance nodes, and we would over-
flow the 32-bit integer node IDs. Many large scientific
datasets would exceed this size limitation, so switch-
ing to 64-bit integer IDs would be necessary.



www.manaraa.com

(1, NAME, a.txt)
(1, TYPE, File)

(2, INPUT, 1)

(2, NAME, /bin/cp)
(2, TYPE, Process)
(2, PID, 3289)

(3, INPUT, 2)

(3, NAME, b.txt)
(3, TYPE, File)

Table 1: Provenance RDF Triples. For each
provenance node, we have subject-predicate-object
triples storing the integer node ID, the predicate, and
the value.

3 Evaluated Storage Methods

There is a large space of approaches for storing semi-
structured data, which we could not possibly cover
entirely in a single research project. Storing semi-
structured data in B-trees appears to be one of the
most popular approaches that do not use a traditional
database system as a storage backend. Even within
this space, there are many decisions to be made:

• Predicate Partitioning: It is possible to store
all key/value pairs that describe a provenance
record in a single B-tree, with one B-tree for each
predicate, or a mixed approach where some pred-
icates have their own B-trees, while the rest are
grouped in a single B-tree.

• Compression: Previous work [1, 2, 23] has
shown the value of compression in both reduc-
ing the footprint of the database on disk and
more importantly, in improving query perfor-
mance. Abadi et al. [1] provide a good discussion
of the various compression and encoding schemes
applicable to database systems.

• Indexes: The query performance obviously also
depends on the availability of indexes, but there
is a trade-off between the disk footprint and
query performance.

We have chosen several storage methods and their
variations that occupy different points in this decision
space.

We initially also experimented with storing the
provenance graph in XML. It is possible to treat each
node as an object with properties such as ancestor
node, node properties, arguments, and so on. This

hierarchical arrangement can be stored as an XML
document, which can in turn be queried using stan-
dard technologies such as XQuery. We experimented
with storing an entire graph as a single document con-
taining node elements, but this suffered from scalabil-
ity problems. In addition to the I/O cost of reading
and parsing an XML document, the parsed objects
suffer a large space inflation from the on-disk docu-
ment size, which quickly consumes gigabytes of main
memory. This makes loading a test set such as the
NetBSD data infeasible using a single XML store.
Consequently, we decided to stop pursuing this path.

3.1 RDF-Inspired Models

We represent the provenance graph as RDF and store
all triples in a compressed clustered B-Tree, as in-
spired by Neumann et al. [23]. The triples are sorted
lexicographically by subject, predicate, and object
strings. This allows easy lookup of values by the tu-
ple (node id, property name), as well as efficient
retrieving of all properties of a particular node. In
addition, we use another index, in which we store the
triples in a different sort order (object, predicate, sub-
ject), which is especially useful for looking up prove-
nance nodes by their property values. This approach
does not allow for efficient retrieval of all subject-
object pairs which have a given property defined.

We also experimented with using delta encoding
as advocated by Neumann et al. [23]. This compres-
sion method encodes an RDF triple as the difference
from the previous triple in the database, producing
three delta values, one for each component of the en-
coded triple. These delta values tend to be small (an
offset of less than 256, which can be stored in 8 bits
or fewer), so combining this approach with null sup-
pression can produce significant space savings. We
eventually decided to abandon this idea, because our
preliminary experiments showed that the cost of in-
cremental updates to a database is prohibitively slow,
causing most insert statements to be CPU bound.

3.2 PASSv1

The provenance research group at Harvard University
stores the collected provenance in several BerkeleyDB
databases (in relational database terminology, these
would be called tables). Both versions of their system
use different database schema. We implemented the
BerkeleyDB scheme used by the first version of their
system (PASSv1) and adapted it as needed to support
our datasets.

The first version is particularly interesting to
study, since it stores provenance in a denormalized



www.manaraa.com

Database Key Values
Map object name p-node number
Provenance p-node number provenance record (table 3)
Argument Data record id command-line text
Argument Index argument p-node numbers
Properties p-node, key property value
Provenance Index p-node p-nodes of children

Table 2: BerkeleyDB databases for PASSv1. The first four databases were part of the original imple-
mentation by the PASSv1 group. We introduced the last two databases in order to adapt the storage system
for our datasets.

Field Description
Name the object name
Type the object type
Input the p-node of a parent
Prev the p-node of the previous version of the object
Env Argument Data record id for environment
Args Argument Data record id for arguments

Table 3: PASSv1 provenance record. A slightly modified version of a provenance record from the PASSv1
model.

form: each ancestor-descendant edge is stored as a
record in a database together with all the properties
of the descendant. Thus, the vertices of the graph
are not stored separately, but they are already pre-
joined with some edges (vertices that do not have any
ancestors are stored as edges with parent NULL). The
original implementation by the provenance group at
Harvard stored only the provenance of persistent ob-
jects, such as files. Given our selected input data, our
implementation must also store transient objects like
processes and workflow operators.

The system also uses dictionary encoding on
command-line arguments and environment variables,
which are usually long and frequently repeating. Fur-
thermore, there is an index that maps individual
command-line arguments to provenance node IDs.

We had to make several modification to this
schema in order to enable it to store our two test
datasets. Most importantly, we added a database for
node properties from the input dataset that were not
representable in the original schema. We also added
an index that allows efficient traversal of the graph in
parent-to-children fashion. The schema together with
our modifications is summarized in Tables 2 and 3.

3.3 PASSv2

The second generation of the PASS storage backend
uses a more typical approach that does not use denor-
malization as in PASSv1. This system lies somewhere
in the middle of the predicate partitioning continuum.

NAME, INPUT, and PREV properties are stored in sepa-
rate BerkeleyDB B-trees, and then there is one large
table for all the other properties. There are two in-
dexes by default: an index on INPUT and an index on
command-line arguments.

PASSv2 has a unique method for encoding
command-line arguments. Each word is encoded sep-
arately using a dictionary, and then the entire com-
mand line is expressed as an ordered list of such
numbers. For example, consider the Unix command
make -w all. If make is encoded as 24, -w as 11,
and all as 49, the entire string is then stored as a
triple (24, 11, 49). An analogous approach is used
to encode a list of environment variables, where each
key-value pair is encoded separately.

3.4 Vertically Partitioned Store

Storing large datasets in columns rather than rows
has become increasingly popular in the data ware-
house community last few years, and it was only a
matter of time when this approach is applied to semi-
structured data. Abadi et al. [2] create a table for
each RDF predicate and then populate it with the
corresponding (subject, object) pairs. For example,
the provenance graph in Figure 1 would be stored in
the following four tables:

• NAME: (1, a.txt), (2, /bin/cp), (3, b.txt)
• TYPE: (1, File), (2, Process), (3, File)
• INPUT: (2, 1), (3, 2)



www.manaraa.com

• PID: (2, 3289)

This table can be stored either in two B-trees (as
in the RDF model) or in a column-store table. We
have decided to implement the first approach, be-
cause then our results would be directly compara-
ble to the aforementioned RDF approaches (see 3.1).
We have implemented two variants of this approach:
the first uses dictionary encoding only for command-
line arguments and environment variables (as in the
PASS models), while the second uses dictionary en-
coding and null suppression for all strings. We use
the PASSv2 method for encoding command-line ar-
guments and environment variables.

4 Experiments

In our experiments, we evaluate the different ap-
proaches for storing semi-structured data. We mea-
sure the query performance and the system footprint
(on-disk storage size and database load time) and
compare these across storage methods.

4.1 Experimental Setup

We are using a dataset generated by the provenance
research group at Harvard, which contains the prove-
nance of compiling parts of NetBSD [21]. We ad-
ditionally include a scientific dataset derived from
D2K data published by the National Center for Su-
percomputing Applications (NCSA) [11], which was
used by one of the teams at the First Provenance
Challenge [20]. We designed our own query sets (see
4.2), because we could not find any standard queries
for NetBSD dataset, and the provided D2K queries
execute very quickly, rendering them unsuitable for
our comparative benchmarking. Instead, we selected
heavy query workloads that exercise different parts
of the storage implementation. To the best of our
knowledge, there are no other standard provenance
datasets or queries.

Our work uses Path Query Language (PQL)
[14, 15], which is the current interface to PASS [21].
This engine has an interface for interaction with a
backend database or a storage engine. It consists of
functions for initialization of the backend, clean up,
inserting new provenance records, and accessing and
modifying existing records. All of our storage back-
ends implement a PQL-compatible interface. We de-
signed our benchmark queries in PQL, but we created
the query plans ourselves in order to better exploit
the features of the storage backends. The PQL inter-
face does not currently implement these customiza-
tions.

We compress the provenance data using struc-
tural inheritance as described in Chapman et al. [8],
which helps us to avoid unnecessary space overhead
when thawing new versions of objects. “Thawing”
refers to incrementing the version number of a file
when opening it for modification, and each thaw cre-
ates a new instance of the provenance node and its
attributes [6]. The datasets we examined use cycle-
breaking on their provenance graphs, which results in
new versions of some nodes. Creating a new version
of a node is expensive, since all of its attributes must
be copied over to the new version, which could be
avoided entirely by structural inheritance. We found
that the extra overhead in query execution due to in-
heritance is negligible when compared to the query
performance on the bloated datasets without struc-
tural inheritance. The way we used structural inher-
itance is very similar to the approach in the PASSv2
system [21].

We utilized a single desktop tower machine run-
ning CentOS GNU/Linux 2.6.18 on an Intel Core 2
Duo E6550 running at 2.33 GHz with 2 GB of RAM
and a single server-grade hard drive. We compiled
our own instance of BerkeleyDB version 4.7.25 (us-
ing GCC 4.1.2).

For all experimental runs, we set the BerkeleyDB
cache size to 512 MB. We forced a cold cache by
restarting the test machine between each run. This
ensures that repeated accesses of the same input
dataset or database file do not speed up by getting
stored in the I/O cache.

4.2 Datasets and Queries

We tested the performance of each of the storage en-
gines on two datasets by measuring the time it takes
to answer our queries, which were selected in order to
test different aspects of the system. We hand-crafted
a query execution plan for each query for each system
using the following optimization heuristics:

1. Use access paths (indexes) whenever possible to
avoid a full database scan

2. Batch reads of records within one table (Berke-
leyDB database) and execute them in order of
the access keys, which minimizes the disk seeks

3. When using dictionary encoding, delay translat-
ing the ID numbers to strings as much as possible

4.2.1 D2K Dataset

The original D2K dataset contains a provenance of
one scientific workflow execution that processes scans



www.manaraa.com

Figure 2: Loading 1 GB of the NetBSD dataset. The two figures compare the physical size of the
database and query times for our approaches, RDF with no compression of attribute values (RDF N.C.),
RDF with dictionary encoding (RDF D.E.), RDF with dictionary encoding and null suppression (RDF N.S.),
a modified first version of PASS (PASSv1), the current version of PASS (PASSv2), a vertically partitioned
store (VPS), and a vertically partitioned store with dictionary encoding (VPS D.E.).

of a brain [11]. In many scientific applications, scien-
tists use the same workflow a large number of times
on different input datasets, producing thousands of
results. In order to simulate this, we took the D2K
dataset and derived from it an equivalent dataset that
contains provenance of ten thousand independent ex-
ecutions of the workflow. The total size of the dataset
is 391 MB. This test set expansion was generated
by replicating the provenance workflow with random
text appended to selected string literals, so that it is
not merely repetition of identical data.

We tested the dataset using the following two
queries:

Query 1: Find all result files “atlas-y.gif” (pos-
sibly in different directories) that were produced as
a consequence of executing “align warp” with argu-
ments “-m 91 -q”.

SELECT DISTINCT C.outputFile
FROM Provenance.% as M, M.input-of+ as C
WHERE M.executableProgram

= "~mcgrath/AIR/AIR5.2.5/bin/align_warp"
AND C.executableProgram
= "~mcgrath/D2Kb/runconvert.sh"
AND C.outputFile glob "*/atlas-y.gif"
AND M.arguments = "-m 91 -q";

Query 2: Find all buddy result files in datasets
with prefixes “data 12” and “data 14” that were pro-
duced using the same arguments of “align warp”.

SELECT W1.arguments, C1.outputFile,
C2.outputFile

FROM Provenance.% as C1, Provenance.% as C2,
C1.input+ as W1, C2.input+ as W2

WHERE C1.executableProgram

= "~mcgrath/D2Kb/runconvert.sh"
AND C2.executableProgram
= "~mcgrath/D2Kb/runconvert.sh"
AND W1.executableProgram
= "~mcgrath/AIR/AIR5.2.5/bin/align_warp"
AND W2.executableProgram
= "~mcgrath/AIR/AIR5.2.5/bin/align_warp"
AND C1.outputFile glob "data_12*"
AND C2.outputFile glob "data_14*"
AND W1.arguments = W2.arguments;

4.2.2 NetBSD Compile Dataset

The second dataset we used for testing was the first 1
GB of the provenance of a NetBSD compile, collected
by the provenance group at Harvard University. Un-
like the D2K dataset, this dataset is characterized
by having a large number of repeated string literals
and having only few attributes per provenance node
without much variety.

Query 1: Find the names of all processes that
had “-Wall” (i.e. enable all warnings) as one of the
command-line arguments.

SELECT X.name
FROM Provenance.% as X
WHERE X.arg% = "-Wall";

Query 2: Find the names of all shared libraries
within three levels of ancestry hierarchy of the pro-
cesses that had “-Wall” as one of their command-line
arguments.

SELECT I.name
FROM Provenance.% as X,

X(.input)?(.input)?(.input)? as I



www.manaraa.com

WHERE X.arg% = "-Wall"
AND I.type = "NP_FILE"
AND I.name glob "*.so";

Query 3: Get the list of names of all referenced
files stored on a volume on which the provenance col-
lection was not enabled.

SELECT X.name
FROM Provenance.% as X
WHERE X.type = "NP_FILE";

5 Results

5.1 Loading Data

Figure 3: D2K Space Usage. On-disk size of each
database storage model, broken down into raw data,
index, and dictionary.

Figure 2 summarizes the loading times of the first
1 GB of the NetBSD dataset together with the phys-
ical sizes of the database. Figure 3 summarizes the
space occupied after loading 391 MB of D2K data.
The database size is broken into its three main com-
ponents:

• Data: the part of the database that can be
used to lookup all property values of provenance
nodes given the (node id, property name) pairs

• Index: the part that can be used to find node
ID numbers given values of properties

• Dictionary: the dictionary used for encoding
all string literals, such as in the two RDF vari-
ants, or just for encoding the command-line ar-
guments in PASSv1 (the dictionary used to en-
code individual command-line words in PASSv2
and VPS is too small to appear on the graph –
less than 10 MB)

In the RDF and Vertical Partitioning approaches, one
could expect that the size of the data and the size of

the index would be proportional, because these meth-
ods provide an index for every property. However, ob-
serve that especially the index for RDF with no com-
pression is disproportionately smaller. The reason for
this is that the data component stores repeated prop-
erty values multiple times – once per node, while the
index stores each value only once.

The major outlier in Figure 2 is the RDF ap-
proach with no compression, which takes twice the
space of the other methods. This is not surprising,
since the dataset contains a large number of repeated
long string literals, which are typically command-line
arguments and especially dumps of environment vari-
ables. The other models have significantly smaller
footprint because they all use dictionary encoding in
these two cases. In the D2K dataset, the difference
between the sizes of the RDF variants is not that sig-
nificant, because it does not contain any environment
variables, and the arguments are typically very short
(less than 10 bytes).

5.1.1 RDF and Vertical Partitioning

The RDF models with dictionary encoding take
about the same amount of space, although it is no
surprise that the version with additional compression
is more space efficient. The difference is however not
significant. In our current implementation, we encode
all integers as 32-bit values, and since the integers in
the database range from 0 to approximately 16 mil-
lion, a 24-bit integer, the average space savings per
one integer are only slightly bigger than one byte. On
the other hand, we expect that the database would
have to use 64-bit integers in applications that require
storage of terabytes of data, which would make the
space savings due to null suppression more significant
(see 2.2).

We performed one test load of the NetBSD data
using 64-bit integer node IDs using the RDF with
dictionary encoding method. When null suppression
was applied, the total size shrank from 1.3 GB to 843
MB, with a linearly related reduction in load time.

Both variants of the Vertically Partitioned Store
occupy approximately the same space. They both
compress command-line arguments and environment
variables, which suggests that these two properties
could be the only ones worth compressing in order
to save space. We will revisit this issue during our
discussion of query performance, when we will see
how it is affected by compressing all string literals.

In the D2K dataset, all arguments in the dataset
are smaller than 10 bytes, so encoding them produces
insignificant space savings. Consequently, the extra
space occupied by extra indexes in RDF and Verti-



www.manaraa.com

cally Partitioned Stores is no longer compensated for.
Exactly as in the NetBSD dataset, RDF without any
form of compression takes most space and the version
with both dictionary encoding and null suppression
performs best, and the space occupied by the VPS
variants and the RDF variants is also comparable.

5.1.2 PASSv1 and PASSv2

According to the results, the second version of PASS
is most space efficient. This is not surprising, since
the storage method provides only few indexes and the
command-line arguments and environment variables
are compressed.

The first version of PASS is surprisingly space ef-
ficient, despite storing object name and type of every
object multiple times in the the database. In fact, it is
not that much larger than PASSv2. In the NetBSD
dataset, command-line arguments and environment
variables frequently contain two or even three digit
number of words, so while PASSv2 compresses one
to few hundred bytes (e.g. 100 words, encoded to 4
bytes each produces 400 bytes), PASSv1 encodes it
using one integer. We did not yet experiment with
using null suppression in PASSv2, but we expect that
applying it would produce noteworthy space savings.
Consequently, relative to PASSv1, the extra space
occupied by PASSv1 by repeating names and types
of objects is compensated by longer entries for ar-
guments and environment variables in PASSv2. In
the D2K dataset, nodes have a very small number of
INPUT edges – more precisely, one INPUT edge for the
majority of nodes. PASSv1 therefore rarely stores
redundant values.

In the D2K dataset, both PASSv1 and PASSv2
outperform the other models. However, if we disable
indexes in all storage approaches that we tested and
reloaded the D2K dataset, all of them would occupy
approximately the same amount of space.

5.1.3 Loading Times

We found the database loading time to be domi-
nated by the I/O time, with CPU usage ranging be-
tween 30% and 50%. The time it takes to load the
data is thus correlated with the space occupied by
the database plus the extra I/O necessary for the
encoding of command-line arguments and environ-
ment variables in two RDF models, both versions of
PASS, and VPS (writing every string literal requires
a lookup in a hash table stored on disk). Considering
only the physical size of the database and ignoring
any other kinds of I/O, one might expect RDF with-
out dictionary encoding to underperform the other

models by a factor of two; the load time is the reason
this is not the case.

In the case of the Vertically Partitioned Store
and the second version of PASS, the database loading
is somewhat slower, because their method of encod-
ing command-line arguments is more CPU intensive.
Encoding a command line or a set of environment
variables requires a fairly large number of dictionary
lookups (on the order of hundreds in the NetBSD
dataset), so this costs CPU time but no I/O. The
dictionary becomes the hotspot, and because of its
small size, it remains pinned in the main memory
for the entire duration of the loading process. Con-
sequently, virtually all dictionary lookups are cache
hits.

5.2 Query Performance

Figure 4: NetBSD Dataset Queries.

Figure 5: D2K Dataset Queries.

Users are very concerned with fast query response
time. Figures 4 and 5 summarize the query execution
times on the NetBSD and D2K datasets, respectively.

The third NetBSD query and the second D2K
query show the value of indexes. Vertically Parti-
tioned Store and RDF could use indexes to answer
the queries, and thus they outperformed PASS, which
do not have required indexes. The only outlier is
RDF with no compression, which performed poorly



www.manaraa.com

on the NetBSD query, because its B-tree that con-
tains the index was even larger than the entire part
of the PASSv1 and PASSv2 databases that were se-
quentially scanned.

In the next two subsections, we will discuss ef-
fects of two more interesting aspects: compression
and predicate partitioning.

5.2.1 Compression

In all cases RDF without compression performs worse
than when the compression is enabled, and that RDF
with null suppression performs better than when
only dictionary encoding is used. These RDF ap-
proaches differ only in the way they use compres-
sion, and since we found all queries to be I/O-bound,
the query performance is roughly correlated to the
storage size. Dictionary encoding costs extra I/O to
translate strings in the query predicates to their in-
teger IDs and vice versa, but in all cases, we found
this I/O cost to be small in comparison with the I/O
savings due to the use of compression.

On the other hand, the scenario is not as clear-
cut in the case of Vertically Partitioned Store, which
differ in whether dictionary encoding is used for all
string literals or selectively only for command-line ar-
guments and environment variables. This suggests
that dictionary encoding can significantly hurt per-
formance of some queries, but at the same time, im-
prove performance of others.

The first NetBSD query requires a lookup of
provenance nodes using an index on command-line
arguments (present in all of the tested systems) and
printing their names. In all cases, the query executor
begins by retrieving the node IDs of all nodes with
the specified argument. In RDF without compres-
sion, PASS, and the first variant of VPS, retrieving
a name of an objects then costs only one database
lookup per a node ID. But when a dictionary is in-
volved, two lookups per node ID are needed to re-
trieve the name: one to get the string ID and the
other to translate it to a string. Consequently, the
methods that use dictionary encoding perform worse
than those that do not.

The only outlier is RDF without compression,
which is very slow because of its large footprint on
disk. Since it stores all data in one B-tree, it has
to scan significantly more data than all the other ap-
proaches in order to answer this query. Consequently,
we would ignore this storage approach in the most of
our subsequent discussion.

On the other hand, Vertically Partitioned Store
with dictionary encoding performs better in the third
NetBSD query. These two queries differ only in which

index is used and thus also in the size of the result set.
While the result set of the second query is small, the
third query returns almost a tenth of the database.
To translate the node ID’s retrieved from the index
to the node names (or their dictionary values), VPS
has to scan every page of the B-tree in which it stores
the NAME property. With dictionary encoding, this
is an almost instantaneous scan of a 15 MB file fol-
lowed by a dictionary scan. In fact, even for the first
query, the B-tree is so small that the database has to
read every page of the file, which is why the query
times for the two queries are very similar. When dic-
tionary encoding is not used, the first query touches
only several pages in the name B-tree, while the third
query has to scan more than 100 MB worth of a B-
tree. Consequently, when answering the third query,
the VPS variant without compression does more I/O
than the first variant.

In the second NetBSD query, the node IDs are
also first looked up using an index on arguments, but
then the graph is traversed up to three levels deep,
considering a name and a type of each encountered
node. In this case, dictionary encoding seriously hurt
the performance of the second variant of Vertical Par-
titioned Store. The difference in latency is greater for
this query than for the first one. The second query re-
quires more dictionary lookups. Furthermore, while
the first query was able to batch the lookups into one
dictionary scan, the second query performs multiple
scans.

Dictionary encoding is however an advantage in
the first D2K query. The query executor must find
a “runconvert” node for every “align warp” node re-
turned by the argument index. On every node visited
during the traversal, the executor checks the value
of the “executableProgram” attribute. The desired
value of this attribute (as specified in the query pred-
icate) is first translated to its string ID. This saves
the extra I/O that would result in having to translate
the ID retrieved from the database on every visited
node. The approaches with dictionary encoding have
smaller disk footprints, so it costs them less I/O to
answer the query than for the approaches that do not
use compression.

Bottom Line Dictionary encoding is a must for en-
coding repeated long string literals, such as environ-
ment variables, and depending on the dataset and the
queries, it can be beneficial to encode all string liter-
als. This is a grey area, as in some cases, compression
reduces I/O, but in others, dictionary lookups can
dominate the query execution time. We found null
suppression to be beneficial in all cases, which can be



www.manaraa.com

seen from the fact that RDF with null suppression
always outperforms RDF without null suppression.

5.2.2 Predicate Partitioning

When multiple properties of a node are stored in one
B-tree, they are frequently stored on disk; if not on
the same page, then at least on neighboring pages.
Consequently, reading multiple properties of one node
is only slightly more expensive than reading one of
them. Reading another property of the same node
is almost guaranteed to result in a cache hit, which
costs a small amount of CPU time. The denormalized
approach of PASSv1 brought this to an extreme by
eliminating even this round trip to the cache. The
reduction in CPU time is negligible, but comes at
the cost of extra I/O, because PASSv1 not only stores
multiple copies of attributes such as NAME or TYPE, but
then it also has to read these multiple copies when,
for example, it is retrieving a list of all values of INPUT
for a particular node.

RDF and Vertically Partitioned Store are the two
opposite extremes of the predicate partitioning con-
tinuum. One variant of RDF and one variant of VPS
use both dictionary encoding and null suppression,
so their query times are directly comparable. In all
cases, VPS outperforms RDF. Our queries reference
only a handful of properties, so the combined size of
the B-trees that VPS uses to answer the query is often
significantly smaller than the one or two B-trees used
by RDF. On the other hand, we expect that RDF
would be more suitable for queries that reference a
large number of predicates, exactly as was shown by
Neumann et al. [23].

Similarly, the query performance of the VPS vari-
ant without dictionary encoding is directly compara-
ble to that of PASSv2. In all but once case, VPS
outperforms PASSv2 (the only exception is the first
NetBSD query, but the difference minimal). The dif-
ference between these two approaches is most remark-
able in the second NetBSD query. In both cases, NAME
and INPUT properties are stored in their individual
B-trees, but unlike PASSv2, VPS has also a separate
B-tree for TYPE. This is the only difference between
VPS and PASSv2 with respect to this query, and yet
it is alone sufficient to make VPS to run three times
faster.

Bottom Line In all of our experiments, the more
predicate partitioning the better. However, if the
queries reference a large number predicates, parti-
tioning can hurt performance as demonstrated by
Neumann et al. [23].

6 Related Work

There is no significant past work on efficient physical
storage of provenance data. Previous work has fo-
cused on logical compression of provenance graphs [8]
and efficient creation of indexes [13]. Most of the
active research in efficient storage considers semi-
structured data, but it does not necessarily focus on
provenance, which has some very distinct character-
istics. There are many existing methods for storing
semi-structured data, which we could not possibly ex-
plore in their entirety. Some of them are described
below. We chose a few of them and evaluated them
in the context of our provenance model.

Our work is complementary to that of Azar [4],
who discusses several other provenance storage meth-
ods. Both his and our work are actively investigating
the problem space of which data model is best suited
for efficient storage (low space usage) and querying
(fast response) of provenance graphs.

The first version of PASS [22] stores ancestor-
descendant edges of the provenance graph as records
in a BerkeleyDB database. Each record of an edge
contains all properties of its descendant. The vertices
of the graph are not stored separately, and those that
do not have any ancestors are thus stored as edges
with parent NULL. The second version of PASS [21]
stores vertices and edges separately. The names of
nodes are stored in a separate B-tree, while other
properties are stored in a large property table.

Natix [10] and Timber [16] are methods for na-
tively storing XML documents. They cannot directly
represent an arbitrary DAG, but the lessons learned
may be applicable to provenance storage (as demon-
strated in a different domain by Heinis and Alonso
[13]). When inserting an XML document to Timber,
the system first creates a parse tree of the document.
The system then traverses the tree in the depth-first
manner, storing the XML tags in this depth-first or-
der. This storage method is especially effective for
workloads that frequently request sub-elements of an
XML element. Natix semantically splits the XML
parse tree into subtrees, each of which fits on one
page. It also uses dictionary encoding to replace non-
leaf nodes in the trees, such as XML tags or attribute
names, by small integer values.

Lore [19] is a database that natively stores gen-
eral semi-structured data. It uses a simple Object Ex-
change Model [24], in which the data can be thought
of as a labeled directed graph. Since Lore’s query ex-
ecution is heavily based on a Scan operator that per-
forms depth-first search, it stores the data as if the
graph were traversed in the depth-first manner. It



www.manaraa.com

also uses indexes to quickly navigate the graph along
the edges.

The majority of existing RDF data storage so-
lutions use relational databases, such as Jena [25],
Oracle [9], Sesame [7], and 3store [12], just to name
a few. We focused most of our study on native, non-
RDBMS representations, so we did not consider these
as a part of our exploration.

RDF-3X [23], a native RDF database, compresses
the RDF triples using dictionary encoding and delta
encoding, and then stores them as leaf nodes in mul-
tiple B-trees. The main database consists of six B-
trees, one for each permutation of (subject, predi-
cate, object). Additionally, there are several pre-
aggregated B-trees, which store triples of the form
(subject, predicate, number of unique objects). The
authors were able to use this approach to efficiently
answer queries that involve a large number of RDF
predicates.

Abadi et al. explored two alternate methods
of storing RDF data that were inspired by column-
oriented databases [2]. In the data is vertically par-
titioned, so that there is one database table and one
index for every RDF predicate. In one approach, the
table is stored as a B-tree compressed using dictio-
nary encoding. In the other approach, the tables are
stored in a column-store database.

7 Conclusion

We have delimited a small area of a very large space
of possible data models and database physical lay-
outs. In exploring the handful of test cases above, we
extracted the underlying features and performance
trends for these approaches. We assert that some
of these principles are applicable to future studies of
efficient provenance storage, among them dictionary
compression of keys and values, using indexing avail-
able in a given database system, and predicate parti-
tioning. The users will have to choose a model that
best fits the size and growth trend of their prove-
nance data. There is a trade-off between query re-
sponsiveness and on-disk storage size. Depending on
a given provenance application, where user interac-
tivity (browser interface tracking) or long-term data
storage (scientific datasets) might be emphasized, the
tuning must be selected properly.

Our established foothold in the provenance space
provides a suggested foundation for building efficient
provenance data storage systems for a wide range of
conceivable applications.

8 Acknowledgements

The authors wish to thank the Fall 2008 CS265 class
for their assistance in reviewing this paper, Prof.
Margo Seltzer for her feedback on the research, David
Holland for his design of PQL, the provenance group
at Harvard for the NetBSD compilation dataset, and
the NCSA for the D2K dataset.

References

[1] Abadi, D. J., Madden, S. R., and Fer-
reira, M. Integrating compression and execu-
tion in column-oriented database systems. In
SIGMOD (Chicago, IL, USA, 2006), pp. 671–
682.

[2] Abadi, D. J., Marcus, A., Madden, S. R.,
and Hollenbach, K. Scalable semantic web
data management using vertical partitioning.
In VLDB ’07: Proceedings of the 33rd inter-
national conference on Very large data bases
(2007), VLDB Endowment, pp. 411–422.

[3] Annis, J., Zhao, Y., Voeckler, J., Wilde,
M., Kent, S., and Foster, I. Applying
Chimera virtual data concepts to cluster finding
in the Sloan Sky Survey. In Supercomputing ’02:
Proceedings of the 2002 ACM/IEEE conference
on Supercomputing (Los Alamitos, CA, USA,
2002), IEEE Computer Society Press, pp. 1–14.

[4] Azar, P. Data models for provenance: An em-
pirical evaluation. CS265 Final Project, 2008.

[5] Bose, R., and Frew, J. Composing lineage
metadata with XML for custom satellite-derived
data products. In Proceedings of the Sixteenth
International Conference on Scientific and Sta-
tistical Database Management (2004).

[6] Braun, U., Holland, D., Muniswamy-
Reddy, K.-K., and Seltzer, M. Coping with
cycles in provenance. Tech. rep., Harvard Uni-
versity, 2006.

[7] Broekstra, J., Kampman, A., and van
Harmelen, F. Sesame: A generic architecture
for storing and querying RDF and RDF schema.
In ISWC ’02: Proceedings of the First Interna-
tional Semantic Web Conference on The Seman-
tic Web (London, UK, 2002), Springer-Verlag,
pp. 54–68.

[8] Chapman, A. P., Jagadish, H. V., and Ra-
manan, P. Efficient provenance storage. In



www.manaraa.com

SIGMOD ’08: Proceedings of the 2008 ACM
SIGMOD international conference on Manage-
ment of data (New York, NY, USA, 2008), ACM,
pp. 993–1006.

[9] Chong, E. I., Das, S., Eadon, G., and
Srinivasan, J. An efficient sql-based rdf query-
ing scheme. In VLDB (2005), ACM, pp. 1216–
1227.

[10] Fiebig, T., Helmer, S., Kanne, C.-C., Mo-
erkotte, G., Neumann, J., Schiele, R.,
and Westmann, T. Anatomy of a native XML
base management system. VLDB J. 11, 4 (2002),
292–314.

[11] Futrelle, J., Myers, J., Auvil,
L., McGrath, R. E., and Clutter,
D. NCSA provenance challenge, D2K.
http://twiki.ipaw.info/pub/Challenge/
NcsaD2k/d2k-provenance.txt. National
Center for Supercomputing Applications, 2006.

[12] Harris, S., and Gibbins, N. 3store: Effi-
cient bulk rdf storage. In PSSS (2003), R. Volz,
S. Decker, and I. F. Cruz, Eds., vol. 89 of CEUR
Workshop Proceedings, CEUR-WS.org.

[13] Heinis, T., and Alonso, G. Efficient lineage
tracking for scientific workflows. In SIGMOD
’08: Proceedings of the 2008 ACM SIGMOD in-
ternational conference on Management of data
(New York, NY, USA, 2008), ACM, pp. 1007–
1018.

[14] Holland, D. A. PQL language guide and refer-
ence. http://www.eecs.harvard.edu/syrah/
pql/docs/. Harvard University, 2009.

[15] Holland, D. A., Braun, U., Maclean, D.,
Muniswamy-Reddy, K.-K., and Seltzer,
M. Choosing a data model and query language
for provenance. In Proceedings of the 2nd Inter-
national Provenance and Annotation Workshop
(Salt Lake City, UT, USA, 2008).

[16] Jagadish, H. V., Al-Khalifa, S., Chapman,
A., Lakshmanan, L. V. S., Nierman, A.,
Paparizos, S., Patel, J. M., Srivastava, D.,
Wiwatwattana, N., Wu, Y., and Yu, C.
TIMBER: A native XML database. VLDB J.
11, 4 (2002), 274–291.

[17] Jayapandian, M., Chapman, A., Tarcea,
V. G., Yu, C., Elkiss, A., Ianni, A., Liu,
B., Nandi, A., Santos, C., Andrews, P.,
Athey, B., States, D. J., and Jagadish,

H. V. Michigan molecular interactions (mimi):
putting the jigsaw puzzle together. Nucleic Acids
Research 35, Database-Issue (2007), 566–571.

[18] Margo, D. W., and Seltzer, M. The case for
browser provenance. Submitted to TaPP 2009,
2008.

[19] McHugh, J., Abiteboul, S., Goldman, R.,
Quass, D., and Widom, J. Lore: A database
management system for semistructured data.
SIGMOD Record 26 (1997), 54–66.

[20] Moreau, L., et al. The First Prove-
nance Challenge. Concurrency and Computa-
tion: Practice and Experience. Published online.
DOI 10.1002/cpe.1233, April 2008.

[21] Muniswamy-Reddy, K.-K., Barillari, J.,
Braun, U., Holland, D. A., Maclean, D.,
Seltzer, M., and Holland, S. D. Layering
in provenance-aware storage systems. Tech. Rep.
Computer Science Technical Report TR-04-08,
Harvard University, 2008.

[22] Muniswamy-Reddy, K.-K., Holland,
D. A., Braun, U., and Seltzer, M.
Provenance-aware storage systems. In ATEC
’06: Proceedings of the annual conference
on USENIX ’06 Annual Technical Confer-
ence (Berkeley, CA, USA, 2006), USENIX
Association, pp. 4–4.

[23] Neumann, T., and Weikum, G. RDF-3X:
a RISC-style engine for RDF. In Interna-
tional Conference on Very Large Data Bases
(VLDB’08) (Auckland, New Zealand, August
2008).

[24] Papakonstantinou, Y., Garcia-Molina,
H., and Widom, J. Object exchange across
heterogeneous information sources. In In Pro-
ceedings of the Eleventh International Confer-
ence on Data Engineering (1995), pp. 251–260.

[25] Wilkinson, K., Sayers, C., Kuno, H., and
Reynolds, D. Efficient RDF storage and re-
trieval in Jena2. In Proc. First International
Workshop on Semantic Web and Databases
(2003).


